Lithium titanate batteries offer many advantages over other lithium-ion chemistries, including: Longer cycle life. Increased safety. Wider working temperature range. Faster charge/discharge rates. However, energy density is relatively low among these batteries. In addition, high C-rates inevitably impact the battery’s capacity over time.
Lithium titanate, or lithium titanate oxide (LTO) batteries, are rechargeable batteries that use lithium titanate oxide as the anode material. These batteries fall under the lithium titanate classification. Their chemistry is based on the exchange of lithium ions between the cathode and the anode.
The self-discharge rate of an LTO (Lithium Titanate) battery stored at 20°C for 90 days can vary. However, high-quality LTO batteries typically retain more than 90% of their capacity after 90 days of storage. Self-discharge Rate: The self-discharge rate refers to the capacity loss of a battery during storage without any external load or charging.
LTO batteries can provide a high charge/discharge rate. This makes them suitable for applications that require fast charging and a high current burst. However, their energy density (energy stored per volume) is relatively low, so you’d need an extensive system to achieve a high capacity.
LTO (Lithium Titanate) batteries offer several advantages, including high power density, long cycle life, fast charging capability, wide temperature range operation, and enhanced safety features. These advantages make LTO batteries a preferred choice for various applications.
A disadvantage of lithium-titanate batteries is their lower inherent voltage (2.4 V), which leads to a lower specific energy (about 30–110 Wh/kg ) than conventional lithium-ion battery technologies, which have an inherent voltage of 3.7 V. Some lithium-titanate batteries, however, have an volumetric energy density of up to 177 Wh/L.