There is another benefit to using a dielectric in a capacitor. Depending on the material used, the capacitance is greater than that given by the equation by a factor , called the dielectric constant. A parallel plate capacitor with a dielectric between its plates has a capacitance given by
A dielectric can be placed between the plates of a capacitor to increase its capacitance. The dielectric strength E m is the maximum electric field magnitude the dielectric can withstand without breaking down and conducting. The dielectric constant K has no unit and is greater than or equal to one (K ≥ 1).
Experimentally it was found that capacitance C increases when the space between the conductors is filled with dielectrics. To see how this happens, suppose a capacitor has a capacitance C when there is no material between the plates. When a dielectric material is is called the dielectric constant.
The energy stored in an empty isolated capacitor is decreased by a factor of κ κ when the space between its plates is completely filled with a dielectric with dielectric constant κ κ. Discuss what would happen if a conducting slab rather than a dielectric were inserted into the gap between the capacitor plates.
A parallel plate capacitor with a dielectric between its plates has a capacitance given by \ (C=\kappa\epsilon_ {0}\frac {A} {d}\\\), where κ is the dielectric constant of the material. The maximum electric field strength above which an insulating material begins to break down and conduct is called dielectric strength.
The capacitance of an empty capacitor is increased by a factor of κ κ when the space between its plates is completely filled by a dielectric with dielectric constant κ κ. Each dielectric material has its specific dielectric constant.