Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2) – NCA. In 1999, Lithium nickel cobalt aluminum oxide battery, or NCA, appeared in some special applications, and it is similar to the NMC. It offers high specific energy, a long life span, and a reasonably good specific power. NCA’s usable charge storage capacity is about 180 to 200 mAh/g.
Sodium-ion battery layered oxide cathode materials exhibit strong similarities with lithium-ion battery layered oxide cathode materials. (1) Both lithium-ion battery and sodium-ion battery layered oxide cathodes have similar layered structures, providing space for ion insertion and extraction.
The high-temperature phase of lithium cobalt oxide is a common layered oxide material in lithium-ion battery cathodes, with a spatial structure belonging to the hexagonal crystal system (unit cell parameters a = 2.816 Å and c = 14.08 Å, α-NaFeO 2 -type layered structure in R-3m space group).
Lithium-cobalt-oxide is an intercalation compound- it forms two-dimensional layers that allow lithium ions to easily enter and leave the structure. In this drawing, the black spheres represent lithium atoms, the tan spheres represent oxygen atoms, and the red spheres represent cobalt atoms.
Currently, most reported layered oxide cathode materials for sodium-ion batteries exist in O3 and P2 structures. O3-type layered transition metal oxide cathode materials have significant application potential due to their high initial capacity, simple preparation process, and abundant raw materials.
Lithium cobalt oxide is the most commonly used cathode material for lithium-ion batteries. Currently, we can find this type of battery in mobile phones, tablets, laptops, and cameras. The overall reaction during discharge is: C6Li + CoO2 ⇄ C6 + LiCoO2