The storage material energy storage capacity (ESCmat) is calculated according to the type of TES technology: i. ESCmat for sensible = heat · TES . . Eq. 4 cp.mat: Specific heat of the material [J·kg-1·K-1]. Mmaterial: mass of the storage material [kg]. ∆Tsys: Design temperature difference of the system [K].
At the present time, energy storage systems (ESS) are becoming more and more widespread as part of electric power systems (EPS). Extensive capabilities of ESS make them one of the key elements of future energy systems [1, 2].
Part i☆ Energy storage systems are increasingly used as part of electric power systems to solve various problems of power supply reliability. With increasing power of the energy storage systems and the share of their use in electric power systems, their influence on operation modes and transient processes becomes significant.
Also, technologically complex ESSs are thermochemical and thermal storage systems. They have a multifactorial and stage-by-stage process of energy production and accumulation, high cost and little prospect for widespread integration in EPS in the near future [, , ].
Energy storage is an interesting proposal to relieve some of the pressure of future power grids towards decarbonization of the energy system, allowing integration between the RES and the power grid’s new ‘Smart’ configuration. The energy storage deployment, in 2018, reached nearly double of 2017 investment (Munuera and Pavarini 2020 ).
However, as batteries and power conversion systems remain costly, the power plant profitability depends on the capacity determination of the battery energy storage system (BESS). This study explored an approach for optimal capacity determination of a BESS combined with renewable energy considering the complex degradation of lithium-ion batteries.