Lead –acid batteries can cover a wide range of requirements and may be further optimised for particular applications (Fig. 10). 5. Operational experience Lead–acid batteries have been used for energy storage in utility applications for many years but it hasonlybeen in recentyears that the demand for battery energy storage has increased.
Lead–acid batteries may be flooded or sealed valve-regulated (VRLA) types and the grids may be in the form of flat pasted plates or tubular plates. The various constructions have different technical performance and can be adapted to particular duty cycles. Batteries with tubular plates offer long deep cycle lives.
Electrochemical energy storage in batteries is attractive because it is compact, easy to deploy, economical and provides virtually instant response both to input from the battery and output from the network to the battery.
Various capacity parameters of lead-acid batteries are: energy density is 60-75 Wh/l, specific energy is 30-40 Wh/Kg, charge/discharge efficiency is 50-92%, specific power is 180 W/kg, self discharge rate is 3-20%/month, cycle durability is 500-800 cycles and nominal cell voltage is 2.105 V . ... [...] ...
Energy storage using batteries is accepted as one of the most important and efficient ways of stabilising electricity networks and there are a variety of different battery chemistries that may be used.
A selection of larger lead battery energy storage installations are analysed and lessons learned identied. Lead is the most efcientlyrecycled commodity fi fi metal and lead batteries are the only battery energy storage system that is almost completely recycled, with over 99% of lead batteries being collected and recycled in Europe and USA.