When the air temperature rises above the optimum temperature range, solar panel performance begins to decline as it reduces the panel's voltage which eventually decreases the power output. High temperatures also cause cracks and damage to the panel's surface. In extreme cases, solar panels become so hot that they stop working altogether.
For example, let’s say your solar panel has a temperature coefficient of -0.35%. This means that for every degree above 77°F that temperatures increase, your solar panels will lose approximately 0.35% in power production efficiency.
When considering solar panels for hot climates, pay attention to the temperature coefficient. This tells you how much efficiency the panel loses for every degree above the standard test temperature of 25°C (77°F). Panels with a lower temperature coefficient, closer to zero, perform better in high temperatures.
As the temperature rises, the output voltage of a solar panel decreases, leading to reduced power generation. For every degree Celsius above 25°C (77°F), a solar panel’s efficiency typically declines by 0.3% to 0.5%.
It usually ranges from -0.2%/°C to -0.5%/°C. Therefore, it can be concluded that for every one degree Celsius rise and increase in the temperature, the solar system efficiency reduces between 0.2% to 0.5% as well. Several things can be done to mitigate the effects of temperature on solar panel efficiency, including:
No, hotter temperatures are not better for solar panels. In fact, solar panels perform better in moderate temperatures rather than extremely hot conditions. Higher temperatures can cause a decrease in their efficiency, leading to reduced power output. Why do solar panels work better in cold?